initial commit

This commit is contained in:
2025-08-02 06:09:31 +03:00
commit 00015ffc03
85 changed files with 62051 additions and 0 deletions

186
FIRMWARE/pi.c Normal file
View File

@@ -0,0 +1,186 @@
/*
* Computation of the n'th decimal digit of \pi with very little memory.
* Written by Fabrice Bellard on January 8, 1997.
*
* We use a slightly modified version of the method described by Simon
* Plouffe in "On the Computation of the n'th decimal digit of various
* transcendental numbers" (November 1996). We have modified the algorithm
* to get a running time of O(n^2) instead of O(n^3log(n)^3).
*
* This program uses mostly integer arithmetic. It may be slow on some
* hardwares where integer multiplications and divisons must be done
* by software. We have supposed that 'int' has a size of 32 bits. If
* your compiler supports 'long long' integers of 64 bits, you may use
* the integer version of 'mul_mod' (see HAS_LONG_LONG).
*/
/* Adapted to FemtoRV32 (Bruno Levy Feb. 2021) */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
// #include "errno_fix.h"
//#define RV32_FASTCODE __attribute((section(".fastcode")))
#define RV32_FASTCODE
/* uncomment the following line to use 'long long' integers */
#define HAS_LONG_LONG
#ifdef HAS_LONG_LONG
#define mul_mod(a,b,m) (( (long long) (a) * (long long) (b) ) % (m))
#else
#define mul_mod(a,b,m) fmod( (double) a * (double) b, m)
#endif
/* return the inverse of x mod y */
int inv_mod(int x, int y) RV32_FASTCODE;
int inv_mod(int x, int y)
{
int q, u, v, a, c, t;
u = x;
v = y;
c = 1;
a = 0;
do {
q = v / u;
t = c;
c = a - q * c;
a = t;
t = u;
u = v - q * u;
v = t;
} while (u != 0);
a = a % y;
if (a < 0)
a = y + a;
return a;
}
/* return (a^b) mod m */
int pow_mod(int a, int b, int m) RV32_FASTCODE;
int pow_mod(int a, int b, int m)
{
int r, aa;
r = 1;
aa = a;
while (1) {
if (b & 1)
r = mul_mod(r, aa, m);
b = b >> 1;
if (b == 0)
break;
aa = mul_mod(aa, aa, m);
}
return r;
}
/* return true if n is prime */
int is_prime(int n) RV32_FASTCODE;
int is_prime(int n)
{
int r, i;
if ((n % 2) == 0)
return 0;
//r = (int) (sqrt(n));
//for (i = 3; i <= r; i += 2)
for (i = 3; i*i <= n; i += 2)
if ((n % i) == 0)
return 0;
return 1;
}
/* return the prime number immediatly after n */
int next_prime(int n) RV32_FASTCODE;
int next_prime(int n)
{
do {
n++;
} while (!is_prime(n));
return n;
}
int digits(int n) RV32_FASTCODE;
int digits(int n) {
int av, a, vmax, N, num, den, k, kq, kq2, t, v, s, i;
double sum;
N = (int) ((n + 20) * log(10) / log(2));
sum = 0;
for (a = 3; a <= (2 * N); a = next_prime(a)) {
vmax = (int) (log(2 * N) / log(a));
av = 1;
for (i = 0; i < vmax; i++)
av = av * a;
s = 0;
num = 1;
den = 1;
v = 0;
kq = 1;
kq2 = 1;
for (k = 1; k <= N; k++) {
t = k;
if (kq >= a) {
do {
t = t / a;
v--;
} while ((t % a) == 0);
kq = 0;
}
kq++;
num = mul_mod(num, t, av);
t = (2 * k - 1);
if (kq2 >= a) {
if (kq2 == a) {
do {
t = t / a;
v++;
} while ((t % a) == 0);
}
kq2 -= a;
}
den = mul_mod(den, t, av);
kq2 += 2;
if (v > 0) {
t = inv_mod(den, av);
t = mul_mod(t, num, av);
t = mul_mod(t, k, av);
for (i = v; i < vmax; i++)
t = mul_mod(t, a, av);
s += t;
if (s >= av)
s -= av;
}
}
t = pow_mod(10, n - 1, av);
s = mul_mod(s, t, av);
sum = fmod(sum + (double) s / (double) av, 1.0);
}
return (int) (sum * 1e9);
}
void main() {
printf("\npi = 3.");
for(int n=1; ;n+=9) {
printf("%d",digits(n));
if(n > 36) break;
}
}