// donut.c by Andy Sloane (@a1k0n) // https://gist.github.com/a1k0n/8ea6516b4946ab36348fb61703dc3194 #include #include #include #include #include #define WITH_RV32M #define debug(...) //#define debug printf // torus radii and distance from camera // these are pretty baked-in to other constants now, so it probably won't work // if you change them too much. const int dz = 5, r1 = 1, r2 = 2; // "Magic circle algorithm"? DDA? I've seen this formulation in a few places; // first in Hal Chamberlain's Musical Applications of Microprocessors, but not // sure what to call it, or how to justify it theoretically. It seems to // correctly rotate around a point "near" the origin, without losing magnitude // over long periods of time, as long as there are enough bits of precision in x // and y. I use 14 bits here. #define R(s,x,y) x-=(y>>s); y+=(x>>s) // CORDIC algorithm to find magnitude of |x,y| by rotating the x,y vector onto // the x axis. This also brings vector (x2,y2) along for the ride, and writes // back to x2 -- this is used to rotate the lighting vector from the normal of // the torus surface towards the camera, and thus determine the lighting amount. // We only need to keep one of the two lighting normal coordinates. int length_cordic(int16_t x, int16_t y, int16_t *x2_, int16_t y2) { int x2 = *x2_; if (x < 0) { // start in right half-plane x = -x; x2 = -x2; } for (int i = 0; i < 8; i++) { int t = x; int t2 = x2; if (y < 0) { x -= y >> i; y += t >> i; x2 -= y2 >> i; y2 += t2 >> i; } else { x += y >> i; y -= t >> i; x2 += y2 >> i; y2 -= t2 >> i; } } // divide by 0.625 as a cheap approximation to the 0.607 scaling factor factor // introduced by this algorithm (see https://en.wikipedia.org/wiki/CORDIC) *x2_ = (x2 >> 1) + (x2 >> 3); return (x >> 1) + (x >> 3); } void main() { // high-precision rotation directions, sines and cosines and their products int16_t sB = 0, cB = 16384; int16_t sA = 11583, cA = 11583; int16_t sAsB = 0, cAsB = 0; int16_t sAcB = 11583, cAcB = 11583; for (;;) { int x1_16 = cAcB << 2; // yes this is a multiply but dz is 5 so it's (sb + (sb<<2)) >> 6 effectively int p0x = dz * sB >> 6; int p0y = dz * sAcB >> 6; int p0z = -dz * cAcB >> 6; const int r1i = r1*256; const int r2i = r2*256; int niters = 0; int nnormals = 0; int16_t yincC = (cA >> 6) + (cA >> 5); // 12*cA >> 8; int16_t yincS = (sA >> 6) + (sA >> 5); // 12*sA >> 8; int16_t xincX = (cB >> 7) + (cB >> 6); // 6*cB >> 8; int16_t xincY = (sAsB >> 7) + (sAsB >> 6); // 6*sAsB >> 8; int16_t xincZ = (cAsB >> 7) + (cAsB >> 6); // 6*cAsB >> 8; int16_t ycA = -((cA >> 1) + (cA >> 4)); // -12 * yinc1 = -9*cA >> 4; int16_t ysA = -((sA >> 1) + (sA >> 4)); // -12 * yinc2 = -9*sA >> 4; //int dmin = INT_MAX, dmax = -INT_MAX; for (int j = 0; j < 23; j++, ycA += yincC, ysA += yincS) { int xsAsB = (sAsB >> 4) - sAsB; // -40*xincY int xcAsB = (cAsB >> 4) - cAsB; // -40*xincZ; int16_t vxi14 = (cB >> 4) - cB - sB; // -40*xincX - sB; int16_t vyi14 = ycA - xsAsB - sAcB; int16_t vzi14 = ysA + xcAsB + cAcB; for (int i = 0; i < 79; i++, vxi14 += xincX, vyi14 -= xincY, vzi14 += xincZ) { int t = 512; // (256 * dz) - r2i - r1i; int16_t px = p0x + (vxi14 >> 5); // assuming t = 512, t*vxi>>8 == vxi<<1 int16_t py = p0y + (vyi14 >> 5); int16_t pz = p0z + (vzi14 >> 5); debug("pxyz (%+4d,%+4d,%+4d)\n", px, py, pz); int16_t lx0 = sB >> 2; int16_t ly0 = sAcB - cA >> 2; int16_t lz0 = -cAcB - sA >> 2; for (;;) { int t0, t1, t2, d; int16_t lx = lx0, ly = ly0, lz = lz0; debug("[%2d,%2d] (px, py) = (%d, %d), (lx, ly) = (%d, %d) -> ", j, i, px, py, lx, ly); t0 = length_cordic(px, py, &lx, ly); debug("t0=%d (lx', ly') = (%d, %d)\n", t0, lx, ly); t1 = t0 - r2i; t2 = length_cordic(pz, t1, &lz, lx); d = t2 - r1i; t += d; if (t > 8*256) { putchar(' '); break; } else if (d < 2) { int N = lz >> 9; putchar(".,-~:;!*=#$@"[N > 0 ? N < 12 ? N : 11 : 0]); nnormals++; break; } // todo: shift and add version of this /* if (d < dmin) dmin = d; if (d > dmax) dmax = d; */ #ifdef WITH_RV32M px += d*vxi14 >> 14; py += d*vyi14 >> 14; pz += d*vzi14 >> 14; #else { // 11x1.14 fixed point 3x parallel multiply // only 16 bit registers needed; starts from highest bit to lowest // d is about 2..1100, so 11 bits are sufficient int16_t dx = 0, dy = 0, dz = 0; int16_t a = vxi14, b = vyi14, c = vzi14; while (d) { if (d&1024) { dx += a; dy += b; dz += c; } d = (d&1023) << 1; a >>= 1; b >>= 1; c >>= 1; } // we already shifted down 10 bits, so get the last four px += dx >> 4; py += dy >> 4; pz += dz >> 4; } #endif niters++; } } puts(""); } printf("%d iterations %d lit pixels\x1b[K", niters, nnormals); // fflush(stdout); // rotate sines, cosines, and products thereof // this animates the torus rotation about two axes R(5, cA, sA); R(5, cAsB, sAsB); R(5, cAcB, sAcB); R(6, cB, sB); R(6, cAcB, cAsB); R(6, sAcB, sAsB); // usleep(15000); printf("\r\x1b[23A"); } }