/******************************************************************************/ // FemtoRV32, a collection of minimalistic RISC-V RV32 cores. // // PetitBateau (make it float): a simple single-precision RISC-V FPU // Mission statement: achieve a good area/performance ratio, by // implementing a full-precision FMA (48 bits), and micro-programmed // Newton-Raphson for FDIV and FSQRT (that reuse the FMA). // // Rounding works as follows: // - all subnormals are flushed to zero // - FADD, FSUB, FMUL, FMADD, FMSUB, FNMADD, FNMSUB: IEEE754 round to zero // - FDIV and FSQRT do not have correct rounding // if PRECISE_DIV is set (default), then FDIV rounding is validated in // tinyraytracer test. Complete proof remains to be done // // [TODO] add FPU CSR (and instret for perf stat)] // [TODO] correct IEEE754 round to zero for FDIV and FSQRT // [TODO] support IEEE754 denormals // [TODO] NaNs propagation and infinity // [TODO] support all IEEE754 rounding modes // // Bruno Levy, 2021 /******************************************************************************/ // TODO: instead of mux between A,B,C and FMA, make FMA always compute // A*B+C and mux rs1,rs2,rs3,1.0,0.0 to A,B,C based on instr (mux // will be more complicated but will probably reduce overall // critical path) ? // TODO: there are too many different paths between the internal registers, // maybe micro-instructions could be redesigned with this in mind. // A could be the MSBs of X, avoiding all MV_A_X instructions. // TODO: the necessity to copy rs1 in E without flushing denormals for // the int-to-fp instructions is unelegant. // Include guard for LiteX `ifndef PETITBATEAU_INCLUDED `define PETITBATEAU_INCLUDED // Check condition and display message in simulation `ifdef BENCH `define ASSERT(cond,msg) if(!(cond)) $display msg `define ASSERT_NOT_REACHED(msg) $display msg `else `define ASSERT(cond,msg) `define ASSERT_NOT_REACHED(msg) `endif module PetitBateau( input clk, input wr, // write strobe, starts computation input [31:2] instr, // current riscv instruction // operands input [31:0] rs1, input [31:0] rs2, input [31:0] rs3, // outputs output busy, output [31:0] out ); // Set to 1 for higher-precision FDIV (costs 30 additional cycles per FDIV) parameter PRECISE_DIV = 1; // Uncomment the line below to emulate all FPU instructions in Verilator // (useful to test instruction decoder and implementations of micro-instr // in C++). See SIM/FPU_funcs.{h,cpp} //`define FPU_EMUL // Two high-resolution registers for the FMA, that computes X+Y // Register X has the accumulator / shifters / leading zero counter // Normalized if first bit set is bit 47 // Represented number is +/- frac * 2^(exp-127-47) reg X_sign; reg signed [8:0] X_exp; reg signed [49:0] X_frac; reg Y_sign; reg signed [8:0] Y_exp; reg signed [49:0] Y_frac; // FPU output = 32 MSBs of X register (see below) // A macro to easily write to it (`X <= ...), // used when FPU output is an integer. `define X {X_sign, X_exp[7:0], X_frac[46:24]} assign out = `X; // Five single-precision floating-point registers for internal use. // A,B,C are wired to the FMA that computes either A*B+C or A+B // D,E are temporaries used by FDIV and FSQRT // Following IEEE754, represented number is +/- frac * 2^(exp-127-23) // (127: bias 23: position of first bit set for normalized numbers) reg A_sign; reg [7:0] A_exp; reg [23:0] A_frac; reg B_sign; reg [7:0] B_exp; reg [23:0] B_frac; reg C_sign; reg [7:0] C_exp; reg [23:0] C_frac; reg D_sign; reg [7:0] D_exp; reg [23:0] D_frac; reg E_sign; reg [7:0] E_exp; reg [23:0] E_frac; /*************************************************************************/ // Load a 32-bit value in RD // RD: one of A,B,C,D,E // VAL: a 32-bit value `define FP_LD32(RD,VAL) \ {RD``_sign, RD``_exp, RD``_frac[22:0]} <= VAL; RD``_frac[23] <= 1'b1 // Load floating point value in RD by sign, exponent, fraction // RD: one of A,B,C,D,E // sign: 1'b1 (-) or 1'b0 (+) // exp: 8-bits, biased exponent // frac: 24-bit fraction `define FP_LD(RD,sign,eexp,frac) \ {RD``_sign, RD``_exp, RD``_frac} <= {sign,eexp,frac} // RD <= RS // RD,RS: one of A,B,C,D,E `define FP_MV(RD,RS) \ {RD``_sign, RD``_exp, RD``_frac} <= {RS``_sign, RS``_exp, RS``_frac} /** FPU micro-instructions and ROM ****************************************/ localparam FPMI_READY = 0; localparam FPMI_LOAD_XY = 1; // X <- A; Y <- B localparam FPMI_LOAD_XY_MUL = 2; // X <- norm(A*B); Y <- C localparam FPMI_ADD_SWAP = 3; // if |X|>|Y| swap(X,Y); // if sign(X) != sign(Y) X <- -X localparam FPMI_ADD_SHIFT = 4; // shift X to match Y exponent localparam FPMI_ADD_ADD = 5; // X <- X + Y localparam FPMI_ADD_NORM = 6; // X <- norm(X) (after ADD_ADD) localparam FPMI_CMP = 7; // X <- test X,Y (FEQ,FLE,FLT) localparam FPMI_MV_A_X = 8; // A <- X localparam FPMI_MV_B_D = 9; // B <- D localparam FPMI_MV_B_NH_D = 10; // B <- -0.5*|D| localparam FPMI_MV_B_E = 11; // B <- E localparam FPMI_MV_C_A = 12; // C <- A localparam FPMI_MV_E_X = 13; // E <- X localparam FPMI_FRCP_PROLOG = 14; // init reciprocal (1/x) localparam FPMI_FRCP_ITER1 = 15; // iteration for reciprocal localparam FPMI_FRCP_ITER2 = 16; // iteration for reciprocal localparam FPMI_FRCP_EPILOG = 17; // epilog for reciprocal localparam FPMI_FDIV_EPILOG = 18; // epilog for fdiv IEEE-754 rounding localparam FPMI_FRSQRT_PROLOG = 19; // init recipr sqr root (1/sqrt(x)) localparam FPMI_FP_TO_INT = 20; // fpuOut <- fpoint_to_int(A) localparam FPMI_INT_TO_FP = 21; // X <- int_to_fpoint(X) localparam FPMI_MIN_MAX = 22; // fpuOut <- min/max(X,Y) localparam FPMI_LOAD_Y_ROUND = 23; // Y <- round to nearest localparam FPMI_NB = 24; // Instruction exit flag (if set in current micro-instr, exit microprogram) localparam FPMI_EXIT_FLAG_bit = 1+$clog2(FPMI_NB); localparam FPMI_EXIT_FLAG = 1 << FPMI_EXIT_FLAG_bit; reg [6:0] fpmi_PC; // current micro-instruction pointer reg [1+$clog2(FPMI_NB):0] fpmi_instr; // current micro-instruction // current micro-instruction as 1-hot: fpmi_instr == NNN <=> fpmi_is[NNN] (* onehot *) wire [FPMI_NB-1:0] fpmi_is = 1 << fpmi_instr[$clog2(FPMI_NB):0]; initial fpmi_PC = 0; assign busy = !fpmi_is[FPMI_READY]; // Generate a micro-instructions in ROM task fpmi_gen; input [6:0] instr; begin fpmi_ROM[I] = instr; I = I + 1; end endtask // Generate a FMA sequence in ROM. // Use fpmi_gen_fma(0) in the middle of a micro-program // Use fpmi_gen_fma(FPMI_EXIT_FLAG) if last instruction of micro-program task fpmi_gen_fma; input [6:0] flags; begin fpmi_gen(FPMI_LOAD_XY_MUL); // X <- norm(A*B), Y <- C fpmi_gen(FPMI_ADD_SWAP); // if(|X| > |Y|) swap(X,Y) (and sgn) fpmi_gen(FPMI_ADD_SHIFT); // shift X according to Y exp fpmi_gen(FPMI_ADD_ADD); // X <- X + Y fpmi_gen(FPMI_ADD_NORM | flags); // X <- normalize(X) end endtask integer I; // current ROM location in initialization integer iter; // iteration variable for generate Newton-Raphson (FDIV,FSQRT) localparam FPMI_ROM_SIZE=82 + (12 + 18)*PRECISE_DIV; reg [1+$clog2(FPMI_NB):0] fpmi_ROM[0:FPMI_ROM_SIZE-1]; // Microprograms start addresses // Programatically determined when generating the ROM ('initial' block below) integer FPMPROG_CMP, FPMPROG_ADD, FPMPROG_MUL, FPMPROG_MADD, FPMPROG_DIV; integer FPMPROG_FP_TO_INT, FPMPROG_INT_TO_FP, FPMPROG_SQRT, FPMPROG_MIN_MAX; // Start the definition of a microprogram (determines start address) `define FPMPROG_BEGIN(prg) prg = I // Ends the definition of a microprogram (displays stats in Verilator) `ifdef BENCH `define FPMPROG_END(prg) \ $display("# %3d microinstructions used by %d:%s",I-prg,prg,`"prg`") `else `define FPMPROG_END(prg) `endif /******************** Generate microprograms in ROM **********************/ initial begin `ifdef BENCH $display("# Generating FPMI ROM..."); `endif I = 0; fpmi_gen(FPMI_READY | FPMI_EXIT_FLAG); // ******************** FLT, FLE, FEQ ********************************* `FPMPROG_BEGIN(FPMPROG_CMP); fpmi_gen(FPMI_LOAD_XY); // X <- A, Y <- B fpmi_gen(FPMI_CMP | FPMI_EXIT_FLAG); // X <- compare(X,Y) `FPMPROG_END(FPMPROG_CMP); // ******************** FADD, FSUB ************************************ `FPMPROG_BEGIN(FPMPROG_ADD); fpmi_gen(FPMI_LOAD_XY); // X <- A, Y <- B fpmi_gen(FPMI_ADD_SWAP); // if(|X| > |Y|) swap(X,Y) (,sgn) fpmi_gen(FPMI_ADD_SHIFT); // shift X according to Y exp fpmi_gen(FPMI_ADD_ADD); // X <- X + Y fpmi_gen(FPMI_ADD_NORM | FPMI_EXIT_FLAG); // X <- normalize(X) `FPMPROG_END(FPMPROG_ADD); // ******************** FMUL ****************************************** `FPMPROG_BEGIN(FPMPROG_MUL); fpmi_gen(FPMI_LOAD_XY_MUL | FPMI_EXIT_FLAG); // X <- A*B `FPMPROG_END(FPMPROG_MUL); // ******************** FMADD, FMSUB, FNMADD, FNMSUB ****************** `FPMPROG_BEGIN(FPMPROG_MADD); fpmi_gen_fma(FPMI_EXIT_FLAG); // X <- A*B+C (5 cycles) `FPMPROG_END(FPMPROG_MADD); // ******************** FDIV ****************************************** // https://en.wikipedia.org/wiki/Division_algorithm // https://stackoverflow.com/questions/24792966/ // error-using-newton-raphson-iteration-method-for- // floating-point-division // `FPMPROG_BEGIN(FPMPROG_DIV); // D' = denominator (rs2) normalized between [0.5,1] (set exp to 126) fpmi_gen(FPMI_FRCP_PROLOG); // D<-A; E<-B; A<-(-D'); B<-32/17; C<-48/17 fpmi_gen_fma(0); // X <- A*B+C (= -D'*32/17 + 48/17) for(iter=0; iter<3; iter=iter+1) begin if(PRECISE_DIV) begin // X <- X + X*(1-D'*X) // (slower more precise iter, but not IEEE754 compliant yet...) fpmi_gen(FPMI_FRCP_ITER1); // A <- -D'; B <- X; C <- 1.0f fpmi_gen_fma(0); // X <- A*B+C (5 cycles) fpmi_gen(FPMI_FRCP_ITER2); // A <- X; C <- B fpmi_gen_fma(0); // X <- A*B+C (5 cycles) end else begin // X <- X * (-X*D' + 2) // (faster but less precise) fpmi_gen(FPMI_FRCP_ITER1); // A <- -D'; B <- X; C <- 2.0f fpmi_gen_fma(0); // X <- A*B+C (5 cycles) fpmi_gen(FPMI_MV_A_X); // A <- X fpmi_gen(FPMI_LOAD_XY_MUL); // X <- A*B; Y <- C end end if(PRECISE_DIV) begin // round X to nearest fpmi_gen(FPMI_LOAD_Y_ROUND); fpmi_gen(FPMI_ADD_ADD); fpmi_gen(FPMI_ADD_NORM); end fpmi_gen(FPMI_FRCP_EPILOG); // A <- (E_sign,frcp_exp,X_frac); B <- D if(PRECISE_DIV) begin // error correction fpmi_gen(FPMI_LOAD_XY_MUL); // X <- A*B fpmi_gen(FPMI_FDIV_EPILOG); // B <- -E; C <- D; D <- A fpmi_gen(FPMI_MV_A_X); fpmi_gen_fma(0); fpmi_gen(FPMI_MV_C_A); fpmi_gen(FPMI_MV_B_D); fpmi_gen(FPMI_MV_A_X); fpmi_gen_fma(FPMI_EXIT_FLAG); end else begin fpmi_gen(FPMI_LOAD_XY_MUL | FPMI_EXIT_FLAG); // X <- A*B end `FPMPROG_END(FPMPROG_DIV); // ******************** FCVT.W.S, FCVT.WU.S *************************** `FPMPROG_BEGIN(FPMPROG_FP_TO_INT); fpmi_gen(FPMI_LOAD_XY); fpmi_gen(FPMI_FP_TO_INT | FPMI_EXIT_FLAG); `FPMPROG_END(FPMPROG_FP_TO_INT); // ******************** FCVT.S.W, FCVT.S.WU *************************** `FPMPROG_BEGIN(FPMPROG_INT_TO_FP); // Compute A+0 (use CLZ plugged on X) fpmi_gen(FPMI_INT_TO_FP); // X <- 0; Y <- A fpmi_gen(FPMI_ADD_ADD); // X <- X + Y fpmi_gen(FPMI_ADD_NORM | FPMI_EXIT_FLAG); // X <- normalize(X) `FPMPROG_END(FPMPROG_INT_TO_FP); // ******************** FSQRT ***************************************** // Using Doom's fast inverse square root algorithm: // https://en.wikipedia.org/wiki/Fast_inverse_square_root // http://www.lomont.org/papers/2003/InvSqrt.pdf // TODO: IEEE754-compliant version // See https://t.co/V1SWQ6N6xD?amp=1 (Method of Switching Constants) // See simple effective fast inverse square root with two magic // constants. // `FPMPROG_BEGIN(FPMPROG_SQRT); // D<-rs1; E,A,B<-(doom_magic - (A >> 1)); C<-3/2 fpmi_gen(FPMI_FRSQRT_PROLOG); for(iter=0; iter<2; iter=iter+1) begin // X <- X * (3/2 - (0.5*rs1*X*X)) fpmi_gen(FPMI_LOAD_XY_MUL); // X <- A*B; Y <- C fpmi_gen(FPMI_MV_A_X); // A <- X fpmi_gen(FPMI_MV_B_NH_D); // B <- -0.5*|D| fpmi_gen_fma(0); // X <- A*B+C fpmi_gen(FPMI_MV_A_X); // A <- X fpmi_gen(FPMI_MV_B_E); // B <- E fpmi_gen(FPMI_LOAD_XY_MUL); // X <- A*B; Y <- C if(iter==0) begin fpmi_gen(FPMI_MV_E_X); // E <- X fpmi_gen(FPMI_MV_A_X); // A <- X fpmi_gen(FPMI_MV_B_E); // B <- E end end // X contains 1/sqrt(rs1), now compute rs1*X to get sqrt(rs1) fpmi_gen(FPMI_MV_A_X); // A <- X fpmi_gen(FPMI_MV_B_D); // B <- D fpmi_gen(FPMI_LOAD_XY_MUL | FPMI_EXIT_FLAG); // X <- A*B; Y <- C `FPMPROG_END(FPMPROG_SQRT); // ******************** FMIN, FMAX ************************************ `FPMPROG_BEGIN(FPMPROG_MIN_MAX); fpmi_gen(FPMI_LOAD_XY); fpmi_gen(FPMI_MIN_MAX | FPMI_EXIT_FLAG); `FPMPROG_END(FPMPROG_MIN_MAX); `ifdef BENCH $display("# FPMI ROM max address:%d",I-1); $display("# FPMI ROM size :%d",FPMI_ROM_SIZE); `ASSERT(I <= FPMI_ROM_SIZE,("!!!!!!! FPMI ROM SIZE exceeded !!!!!!!")); `endif end `ifndef FPU_EMUL // determine microprogram to be called based on decoded instruction reg [6:0] fpmprog; always @(*) begin (* parallel_case, full_case *) case(1'b1) isFLT | isFLE | isFEQ : fpmprog = FPMPROG_CMP[6:0]; isFADD | isFSUB : fpmprog = FPMPROG_ADD[6:0]; isFMUL : fpmprog = FPMPROG_MUL[6:0]; isFMADD | isFMSUB | isFNMADD | isFNMSUB : fpmprog = FPMPROG_MADD[6:0]; isFDIV : fpmprog = FPMPROG_DIV[6:0]; isFSQRT : fpmprog = FPMPROG_SQRT[6:0]; isFCVTWS | isFCVTWUS : fpmprog = FPMPROG_FP_TO_INT[6:0]; isFCVTSW | isFCVTSWU : fpmprog = FPMPROG_INT_TO_FP[6:0]; isFMIN | isFMAX : fpmprog = FPMPROG_MIN_MAX[6:0]; default : fpmprog = 0; endcase end // next micro-instruction program counter wire [6:0] fpmi_PC_next = wr ? fpmprog : fpmi_instr[FPMI_EXIT_FLAG_bit] ? 0 : fpmi_PC+1 ; always @(posedge clk) begin fpmi_PC <= fpmi_PC_next; fpmi_instr <= fpmi_ROM[fpmi_PC_next]; end always @(posedge clk) begin if(wr) begin // Denormals are flushed to zero `FP_LD(A, rs1[31], rs1[30:23], (|rs1[30:23]?{1'b1,rs1[22:0]}:24'b0)); `FP_LD(B, rs2[31], rs2[30:23], (|rs2[30:23]?{1'b1,rs2[22:0]}:24'b0)); `FP_LD(C, rs3[31], rs3[30:23], (|rs3[30:23]?{1'b1,rs3[22:0]}:24'b0)); // Backup rs1 in E without flushing to zero (for int2fp instructions) `FP_LD32(E, rs1); // Single-cycle instructions (* parallel_case *) case(1'b1) isFSGNJ : `X <= { rs2[31], rs1[30:0]}; isFSGNJN : `X <= { !rs2[31], rs1[30:0]}; isFSGNJX : `X <= { rs1[31]^rs2[31], rs1[30:0]}; isFCLASS : `X <= fclass; isFMVXW | isFMVWX : `X <= rs1; endcase end else if(busy) begin // Implementation of the micro-instructions (* parallel_case *) case(1'b1) // X <- A ; Y <- B fpmi_is[FPMI_LOAD_XY]: begin X_sign <= A_sign; X_frac <= {2'b0, A_frac, 24'd0}; X_exp <= {1'b0, A_exp}; Y_sign <= B_sign ^ isFSUB; Y_frac <= {2'b0, B_frac, 24'd0}; Y_exp <= {1'b0, B_exp}; end // X <- (+/-) normalize(A*B); Y <- (+/-)C fpmi_is[FPMI_LOAD_XY_MUL]: begin X_sign <= A_sign ^ B_sign ^ (isFNMSUB | isFNMADD); X_frac <= prod_Z ? 0 : (prod_frac[47] ? prod_frac : {prod_frac[48:0],1'b0}); X_exp <= prod_Z ? 0 : prod_exp_norm; Y_sign <= C_sign ^ (isFMSUB | isFNMADD); Y_frac <= {2'b0, C_frac, 24'd0}; Y_exp <= {1'b0, C_exp}; end // if(|X| > |Y|) swap(X,Y) // if X_sign != Y_sign X <- -X // We always *add*, but replace X_frac with -X_frac if the // sign of the operands differ, THEN we shift (signed shift). In // this way, rounding is correct, even when subtracting a // low magnitude numner from a large magnitude one. fpmi_is[FPMI_ADD_SWAP]: begin if(fabsY_LT_fabsX) begin X_frac <= (X_sign ^ Y_sign) ? -Y_frac : Y_frac; Y_frac <= X_frac; X_exp <= Y_exp; Y_exp <= X_exp; X_sign <= Y_sign; Y_sign <= X_sign; end else if(X_sign ^ Y_sign) begin X_frac <= -X_frac; end end // shift A in order to make it match B exponent fpmi_is[FPMI_ADD_SHIFT]: begin `ASSERT(!fabsY_LT_fabsX, ("ADD_SHIFT: incorrect order")); X_frac <= X_frac >>> exp_diff; // note the signed shift ! X_exp <= Y_exp; end // A <- A (+/-) B fpmi_is[FPMI_ADD_ADD]: begin X_frac <= frac_sum[49:0]; X_sign <= Y_sign; // normalization left shamt = 47 - first_bit_set = clz - 16 norm_lshamt <= frac_sum_clz - 16; // Exponent of X once normalized = X_exp + first_bit_set - 47 // = X_exp + 63 - clz - 47 = X_exp + 16 - clz X_exp_norm <= X_exp + 16 - {3'b000,frac_sum_clz}; end // X <- normalize(X) (after ADD_ADD -> norm_lshamt and A_exp_norm) fpmi_is[FPMI_ADD_NORM]: begin if(X_exp_norm <= 0 || (X_frac == 0)) begin X_frac <= 0; X_exp <= 0; end else begin X_frac <= X_frac[48] ? (X_frac >> 1) : X_frac << norm_lshamt; X_exp <= X_exp_norm; end end fpmi_is[FPMI_LOAD_Y_ROUND]: begin Y_sign <= X_sign; Y_exp <= X_exp; Y_frac <= X_frac[23] ? (1 << 24) : 50'd0; end // X <- result of comparison between X and Y fpmi_is[FPMI_CMP]: begin `X <= { 31'b0, isFLT && X_LT_Y || isFLE && X_LE_Y || isFEQ && X_EQ_Y }; end fpmi_is[FPMI_MV_B_D] : `FP_MV(B,D); fpmi_is[FPMI_MV_B_E] : `FP_MV(B,E); fpmi_is[FPMI_MV_A_X] : `FP_LD(A,X_sign,X_exp[7:0],X_frac[47:24]); fpmi_is[FPMI_MV_C_A] : `FP_MV(C,A); fpmi_is[FPMI_MV_E_X] : `FP_LD(E,X_sign,X_exp[7:0],X_frac[47:24]); // B <= -|D| / 2.0 fpmi_is[FPMI_MV_B_NH_D]: {B_sign, B_exp, B_frac} <= {1'b1,D_exp-8'd1,D_frac}; fpmi_is[FPMI_FRCP_PROLOG]: begin `FP_MV(D,A); `FP_MV(E,B); // A <= -D', that is, -(B normalized in [0.5,1]) `FP_LD(A,1'b1,8'd126, B_frac); `FP_LD32(B, 32'h3FF0F0F1); // 32/17 `FP_LD32(C, 32'h4034B4B5); // 48/17 end fpmi_is[FPMI_FRCP_ITER1]: begin `FP_LD(A,1'b1,8'd126, E_frac); // A <= -D' `FP_LD(B,X_sign,X_exp[7:0],X_frac[47:24]); // B <= X // 1.0 2.0 `FP_LD32(C, PRECISE_DIV ? 32'h3f800000 : 32'h40000000); end // This one is used only if PRECISE_DIV is set fpmi_is[FPMI_FRCP_ITER2]: begin `FP_LD(A,X_sign,X_exp[7:0],X_frac[47:24]); // A <= X `FP_MV(C,B); end fpmi_is[FPMI_FRCP_EPILOG]: begin `FP_LD(A,E_sign,frcp_exp[7:0],X_frac[47:24]); `FP_MV(B,D); end // This one is used only if PRECISE_DIV is set fpmi_is[FPMI_FDIV_EPILOG]: begin `FP_LD(B,!E_sign, E_exp, E_frac); // B <= -E `FP_MV(C,D); `FP_MV(D,A); end fpmi_is[FPMI_FRSQRT_PROLOG]: begin `FP_LD32(D, rs1); `FP_LD32(E, rsqrt_doom_magic); `FP_LD32(A, rsqrt_doom_magic); `FP_LD32(B, rsqrt_doom_magic); `FP_LD32(C, 32'h3fc00000); // 1.5 end fpmi_is[FPMI_FP_TO_INT]: begin // TODO: check overflow `X <= (isFCVTWUS | !X_sign) ? X_fcvt_ftoi_shifted : -$signed(X_fcvt_ftoi_shifted); end fpmi_is[FPMI_INT_TO_FP]: begin // TODO: rounding // We do a fake addition with zero, to prepare normalization // (uses CLZ plugged on the adder). X_frac <= 0; // 127+23: standard exponent bias // +6 because it is bit 29 of rs1 that overwrites // bit 47 of A_frac, instead of bit 23 (and 29-23 = 6). X_exp <= 127+23+6; Y_frac <= (isFCVTSWU | !E_sign) ? {E_sign, E_exp, E_frac[22:0], 18'd0} : {-$signed({E_sign, E_exp, E_frac[22:0]}), 18'd0}; Y_sign <= isFCVTSW & E_sign; end fpmi_is[FPMI_MIN_MAX]: begin `X <= (X_LT_Y ^ isFMAX) ? {X_sign, X_exp[7:0], X_frac[46:24]} : {Y_sign, Y_exp[7:0], Y_frac[46:24]}; end endcase end end `endif // Some circuitry used by the FPU micro-instructions: // ******************* Comparisons ****************************************** // Exponent adder wire signed [8:0] exp_sum = Y_exp + X_exp; wire signed [8:0] exp_diff = Y_exp - X_exp; wire expX_EQ_expY = (exp_diff == 0); wire fracX_EQ_fracY = (frac_diff == 0); wire fabsX_EQ_fabsY = (expX_EQ_expY && fracX_EQ_fracY); wire fabsX_LT_fabsY = (!exp_diff[8] && !expX_EQ_expY) || (expX_EQ_expY && !fracX_EQ_fracY && !frac_diff[50]); wire fabsX_LE_fabsY = (!exp_diff[8] && !expX_EQ_expY) || (expX_EQ_expY && !frac_diff[50]); wire fabsY_LT_fabsX = exp_diff[8] || (expX_EQ_expY && frac_diff[50]); wire fabsY_LE_fabsX = exp_diff[8] || (expX_EQ_expY && (frac_diff[50] || fracX_EQ_fracY)); wire X_LT_Y = X_sign && !Y_sign || X_sign && Y_sign && fabsY_LT_fabsX || !X_sign && !Y_sign && fabsX_LT_fabsY ; wire X_LE_Y = X_sign && !Y_sign || X_sign && Y_sign && fabsY_LE_fabsX || !X_sign && !Y_sign && fabsX_LE_fabsY ; wire X_EQ_Y = fabsX_EQ_fabsY && (X_sign == Y_sign); // ****************** Addition, subtraction ********************************* wire signed [50:0] frac_sum = Y_frac + X_frac; wire signed [50:0] frac_diff = Y_frac - X_frac; // ****************** Product *********************************************** wire [49:0] prod_frac = A_frac * B_frac; // TODO: check overflows // exponent of product, once normalized // (obtained by writing expression of product and inspecting exponent) // Two cases: first bit set = 47 or 46 (only possible cases with normals) wire signed [8:0] prod_exp_norm = A_exp+B_exp-127+{7'b0,prod_frac[47]}; // detect null product and underflows (all denormals are flushed to zero) wire prod_Z = (prod_exp_norm <= 0) || !(|prod_frac[47:46]); // ****************** Normalization ***************************************** // Count leading zeroes in A+B // Note1: CLZ only work with power of two width (hence 13'b0 padding). // Note2: first bit set = 63 - CLZ (of course !) wire [5:0] frac_sum_clz; CLZ clz2({13'b0,frac_sum}, frac_sum_clz); reg [5:0] norm_lshamt; // shift amount for ADD normalization // Exponent of A once normalized = X_exp + first_bit_set - 47 // = X_exp + 63 - clz - 47 = X_exp + 16 - clz // X_exp_norm <= X_exp + 16 - {3'b000,A_clz}; reg signed [8:0] X_exp_norm; // ****************** Reciprocal (1/x), used by FDIV ************************ // Exponent for reciprocal (1/x) // Initial value of x kept in E. wire signed [8:0] frcp_exp = 9'd126 + X_exp - $signed({1'b0, E_exp}); // ****************** Reciprocal square root (1/sqrt(x)) ******************** // https://en.wikipedia.org/wiki/Fast_inverse_square_root wire [31:0] rsqrt_doom_magic = 32'h5f3759df - {1'b0,A_exp, A_frac[22:1]}; // ****************** Float to Integer conversion *************************** // -127-23 is standard exponent bias // -6 because it is bit 29 of X that corresponds to bit 47 of X_frac, // instead of bit 23 (and 23-29 = -6). wire signed [8:0] fcvt_ftoi_shift = A_exp - 9'd127 - 9'd23 - 9'd6; wire signed [8:0] neg_fcvt_ftoi_shift = -fcvt_ftoi_shift; wire [31:0] X_fcvt_ftoi_shifted = fcvt_ftoi_shift[8] ? // R or L shift (|neg_fcvt_ftoi_shift[8:5] ? 0 : // underflow ({X_frac[49:18]} >> neg_fcvt_ftoi_shift[4:0])) : ({X_frac[49:18]} << fcvt_ftoi_shift[4:0]); // ******************* Classification *************************************** wire rs1_exp_Z = (rs1[30:23] == 0 ); wire rs1_exp_255 = (rs1[30:23] == 255); wire rs1_frac_Z = (rs1[22:0] == 0 ); wire [31:0] fclass = { 22'b0, rs1_exp_255 & rs1[22], // 9: quiet NaN rs1_exp_255 & !rs1[22] & (|rs1[21:0]), // 8: sig NaN !rs1[31] & rs1_exp_255 & rs1_frac_Z, // 7: +infinity !rs1[31] & !rs1_exp_Z & !rs1_exp_255, // 6: +normal !rs1[31] & rs1_exp_Z & !rs1_frac_Z, // 5: +subnormal !rs1[31] & rs1_exp_Z & rs1_frac_Z, // 4: +0 rs1[31] & rs1_exp_Z & rs1_frac_Z, // 3: -0 rs1[31] & rs1_exp_Z & !rs1_frac_Z, // 2: -subnormal rs1[31] & !rs1_exp_Z & !rs1_exp_255, // 1: -normal rs1[31] & rs1_exp_255 & rs1_frac_Z // 0: -infinity }; /************************************************************************/ // RV32F instruction decoder // See table p133 (RV32G instruction listings) // Notes: // - FLW/FSW handled by LOAD/STORE in femtorv32 (instr[2] set if FLW/FSW) // - For all other F instructions, instr[6:5] == 2'b10 // - FMADD/FMSUB/FNMADD/FNMSUB: instr[4] = 1'b0 // - For all remaining F instructions, instr[4] = 1'b1 // - FMV.X.W and FCLASS have same funct7 (7'b1110000), // (discriminated by instr[12]) // - there is a big gotcha in the official doc for RV32F: // the doc says FNMADD computes -rs1*rs2-rs3 // (yes, with *minus* rs3) // it should have said FNMADD computes -(rs1*rs2+rs3) // and FNMSUB compures -(rs1*rs2-rs3) // they probably did not put the parentheses because when // you implement it, you change the sign of rs1 and rs3 according // to the operation rather than the sign of the whole result // (here, it is done by the FPMI_LOAD_XY_MUL micro instruction). reg isFMADD, isFMSUB, isFNMSUB, isFNMADD; reg isFADD, isFSUB, isFMUL, isFDIV, isFSQRT; reg isFSGNJ, isFSGNJN, isFSGNJX; reg isFMIN, isFMAX; reg isFEQ, isFLT, isFLE; reg isFCLASS, isFCVTWS, isFCVTWUS; reg isFCVTSW, isFCVTSWU; reg isFMVXW, isFMVWX; always @(*) begin isFMADD = (instr[4:2] == 3'b000); // rd <- rs1*rs2+rs3 isFMSUB = (instr[4:2] == 3'b001); // rd <- rs1*rs2-rs3 isFNMSUB = (instr[4:2] == 3'b010); // rd <- -(rs1*rs2-rs3) isFNMADD = (instr[4:2] == 3'b011); // rd <- -(rs1*rs2+rs3) isFADD = (instr[4] && (instr[31:27] == 5'b00000)); isFSUB = (instr[4] && (instr[31:27] == 5'b00001)); isFMUL = (instr[4] && (instr[31:27] == 5'b00010)); isFDIV = (instr[4] && (instr[31:27] == 5'b00011)); isFSQRT = (instr[4] && (instr[31:27] == 5'b01011)); isFSGNJ = (instr[4] && (instr[31:27]==5'b00100)&&(instr[13:12]==2'b00)); isFSGNJN = (instr[4] && (instr[31:27]==5'b00100)&&(instr[13:12]==2'b01)); isFSGNJX = (instr[4] && (instr[31:27]==5'b00100)&&(instr[13:12]==2'b10)); isFMIN = (instr[4] && (instr[31:27] == 5'b00101) && !instr[12]); isFMAX = (instr[4] && (instr[31:27] == 5'b00101) && instr[12]); isFEQ =(instr[4] && (instr[31:27]==5'b10100) && (instr[13:12] == 2'b10)); isFLT =(instr[4] && (instr[31:27]==5'b10100) && (instr[13:12] == 2'b01)); isFLE =(instr[4] && (instr[31:27]==5'b10100) && (instr[13:12] == 2'b00)); isFCLASS = (instr[4] && (instr[31:27] == 5'b11100) && instr[12]); isFCVTWS = (instr[4] && (instr[31:27] == 5'b11000) && !instr[20]); isFCVTWUS = (instr[4] && (instr[31:27] == 5'b11000) && instr[20]); isFCVTSW = (instr[4] && (instr[31:27] == 5'b11010) && !instr[20]); isFCVTSWU = (instr[4] && (instr[31:27] == 5'b11010) && instr[20]); isFMVXW = (instr[4] && (instr[31:27] == 5'b11100) && !instr[12]); isFMVWX = (instr[4] && (instr[31:27] == 5'b11110)); end `ifdef FPU_EMUL `define FPU_EMUL1(op) `X <= $c32(op,"(",rs1,")") `define FPU_EMUL2(op) `X <= $c32(op,"(",rs1,",",rs2,")") `define FPU_EMUL3(op) `X <= $c32(op,"(",rs1,",",rs2,",",rs3,")") always @(posedge clk) begin if(wr) begin (* parallel_case *) case(1'b1) isFMUL : `FPU_EMUL2("FMUL"); isFADD : `FPU_EMUL2("FADD"); isFSUB : `FPU_EMUL2("FSUB"); isFDIV : `FPU_EMUL2("FDIV"); isFSQRT : `FPU_EMUL1("FSQRT"); isFMADD : `FPU_EMUL3("FMADD"); isFMSUB : `FPU_EMUL3("FMSUB"); isFNMADD : `FPU_EMUL3("FNMADD"); isFNMSUB : `FPU_EMUL3("FNMSUB"); isFEQ : `FPU_EMUL2("FEQ"); isFLT : `FPU_EMUL2("FLT"); isFLE : `FPU_EMUL2("FLE"); isFCVTWS : `FPU_EMUL1("FCVTWS"); isFCVTWUS: `FPU_EMUL1("FCVTWUS"); isFCVTSW : `FPU_EMUL1("FCVTSW"); isFCVTSWU: `FPU_EMUL1("FCVTSWU"); isFMIN : `FPU_EMUL2("FMIN"); isFMAX : `FPU_EMUL2("FMAX"); isFCLASS : `FPU_EMUL1("FCLASS"); isFSGNJ : `FPU_EMUL2("FSGNJ"); isFSGNJN : `FPU_EMUL2("FSGNJN"); isFSGNJX : `FPU_EMUL2("FSGNJX"); isFMVXW | isFMVWX : `X <= rs1; endcase end end `endif /****************************************************************************/ // When doing simulations, compare the result of all operations with // what's computed on the host CPU. // Note: my FDIV and FSQRT are not IEEE754 compliant (yet) ! // (checks commented-out for now) `ifdef NRV_FEMTORV32_PETITBATEAU // makes sure we are in the learn-FPGA fmwk `ifdef VERILATOR `define FPU_CHECK1(op) \ z <= $c32("CHECK_",op,"(",`X,",",rs1,")") `define FPU_CHECK2(op) \ z <= $c32("CHECK_",op,"(",`X,",",rs1,",",rs2,")") `define FPU_CHECK3(op) \ z <= $c32("CHECK_",op,"(",`X,",",rs1,",",rs2,",",rs3,")") reg [31:0] z; reg active; always @(posedge clk) begin if(wr) begin active <= 1'b1; end if(active && !busy) begin active <= 1'b0; case(1'b1) isFMUL : `FPU_CHECK2("FMUL"); isFADD : `FPU_CHECK2("FADD"); isFSUB : `FPU_CHECK2("FSUB"); isFDIV : `FPU_CHECK2("FDIV"); // isFSQRT: `FPU_CHECK1("FSQRT"); // yes I know, not IEEE754 yet isFMADD: `FPU_CHECK3("FMADD"); isFMSUB: `FPU_CHECK3("FMSUB"); isFNMADD: `FPU_CHECK3("FNMADD"); isFNMSUB: `FPU_CHECK3("FNMSUB"); isFEQ: `FPU_CHECK2("FEQ"); isFLT: `FPU_CHECK2("FLT"); isFLE: `FPU_CHECK2("FLE"); isFCVTWS : `FPU_CHECK1("FCVTWS"); isFCVTWUS: `FPU_CHECK1("FCVTWUS"); isFCVTSW : `FPU_CHECK1("FCVTSW"); isFCVTSWU: `FPU_CHECK1("FCVTSWU"); isFMIN: `FPU_CHECK2("FMIN"); isFMAX: `FPU_CHECK2("FMAX"); endcase end end `endif `endif endmodule /**********************************************************************/ // FPU Normalization needs to detect the position of the first bit set // in the A_frac register. It is easier to count the number of leading // zeroes (CLZ for Count Leading Zeroes), as follows. See: // https://electronics.stackexchange.com/questions/196914/ // verilog-synthesize-high-speed-leading-zero-count // TODO: test also Dean Gaudet's algorithm (see Hackers Delights p. 110) module CLZ #( parameter W_IN = 64, // must be power of 2, >= 2 parameter W_OUT = $clog2(W_IN) ) ( input wire [W_IN-1:0] in, output wire [W_OUT-1:0] out ); generate if(W_IN == 2) begin assign out = !in[1]; end else begin wire [W_OUT-2:0] half_count; wire [W_IN/2-1:0] lhs = in[W_IN/2 +: W_IN/2]; wire [W_IN/2-1:0] rhs = in[0 +: W_IN/2]; wire left_empty = ~|lhs; CLZ #( .W_IN(W_IN/2) ) inner( .in(left_empty ? rhs : lhs), .out(half_count) ); assign out = {left_empty, half_count}; end endgenerate endmodule `endif