newStep.v

This commit is contained in:
2025-11-27 04:28:54 +03:00
parent a84b8fcfde
commit 6e38a6c1af
85 changed files with 25646 additions and 6801 deletions

211
step7.v Normal file
View File

@@ -0,0 +1,211 @@
/**
* Step 7: Creating a RISC-V processor
* Assembly
* DONE*
*/
`default_nettype none
`include "clockworks.v"
module SOC (
input CLK, // system clock
input RESET, // reset button
output [4:0] LEDS, // system LEDs
input RXD, // UART receive
output TXD // UART transmit
);
wire clk; // internal clock
wire resetn; // internal reset signal, goes low on reset
// Plug the leds on register 1 to see its contents
reg [4:0] leds;
assign LEDS = leds;
reg [31:0] MEM [0:255];
reg [31:0] PC; // program counter
reg [31:0] instr; // current instruction
`include "riscv_assembly.v"
initial begin
PC = 0;
ADD(x0,x0,x0);
ADD(x1,x0,x0);
ADDI(x1,x1,1);
ADDI(x1,x1,1);
ADDI(x1,x1,1);
ADDI(x1,x1,1);
ADD(x2,x1,x0);
ADD(x3,x1,x2);
SRLI(x3,x3,3);
SLLI(x3,x3,31);
SRAI(x3,x3,5);
SRLI(x1,x3,26);
EBREAK();
end
// See the table P. 105 in RISC-V manual
// The 10 RISC-V instructions
wire isALUreg = (instr[6:0] == 7'b0110011); // rd <- rs1 OP rs2
wire isALUimm = (instr[6:0] == 7'b0010011); // rd <- rs1 OP Iimm
wire isBranch = (instr[6:0] == 7'b1100011); // if(rs1 OP rs2) PC<-PC+Bimm
wire isJALR = (instr[6:0] == 7'b1100111); // rd <- PC+4; PC<-rs1+Iimm
wire isJAL = (instr[6:0] == 7'b1101111); // rd <- PC+4; PC<-PC+Jimm
wire isAUIPC = (instr[6:0] == 7'b0010111); // rd <- PC + Uimm
wire isLUI = (instr[6:0] == 7'b0110111); // rd <- Uimm
wire isLoad = (instr[6:0] == 7'b0000011); // rd <- mem[rs1+Iimm]
wire isStore = (instr[6:0] == 7'b0100011); // mem[rs1+Simm] <- rs2
wire isSYSTEM = (instr[6:0] == 7'b1110011); // special
// The 5 immediate formats
wire [31:0] Uimm={ instr[31], instr[30:12], {12{1'b0}}};
wire [31:0] Iimm={{21{instr[31]}}, instr[30:20]};
wire [31:0] Simm={{21{instr[31]}}, instr[30:25],instr[11:7]};
wire [31:0] Bimm={{20{instr[31]}}, instr[7],instr[30:25],instr[11:8],1'b0};
wire [31:0] Jimm={{12{instr[31]}}, instr[19:12],instr[20],instr[30:21],1'b0};
// Source and destination registers
wire [4:0] rs1Id = instr[19:15];
wire [4:0] rs2Id = instr[24:20];
wire [4:0] rdId = instr[11:7];
// function codes
wire [2:0] funct3 = instr[14:12];
wire [6:0] funct7 = instr[31:25];
// The registers bank
reg [31:0] RegisterBank [0:31];
reg [31:0] rs1; // value of source
reg [31:0] rs2; // registers.
wire [31:0] writeBackData; // data to be written to rd
wire writeBackEn; // asserted if data should be written to rd
`ifdef BENCH
integer i;
initial begin
for(i=0; i<32; ++i) begin
RegisterBank[i] = 0;
end
end
`endif
// The ALU
wire [31:0] aluIn1 = rs1;
wire [31:0] aluIn2 = isALUreg ? rs2 : Iimm;
reg [31:0] aluOut;
wire [4:0] shamt = isALUreg ? rs2[4:0] : instr[24:20]; // shift amount
// ADD/SUB/ADDI:
// funct7[5] is 1 for SUB and 0 for ADD. We need also to test instr[5]
// to make the difference with ADDI
//
// SRLI/SRAI/SRL/SRA:
// funct7[5] is 1 for arithmetic shift (SRA/SRAI) and
// 0 for logical shift (SRL/SRLI)
always @(*) begin
case(funct3)
3'b000: aluOut = (funct7[5] & instr[5]) ?
(aluIn1 - aluIn2) : (aluIn1 + aluIn2);
3'b001: aluOut = aluIn1 << shamt;
3'b010: aluOut = ($signed(aluIn1) < $signed(aluIn2));
3'b011: aluOut = (aluIn1 < aluIn2);
3'b100: aluOut = (aluIn1 ^ aluIn2);
3'b101: aluOut = funct7[5]? ($signed(aluIn1) >>> shamt) :
($signed(aluIn1) >> shamt);
3'b110: aluOut = (aluIn1 | aluIn2);
3'b111: aluOut = (aluIn1 & aluIn2);
endcase
end
// The state machine
localparam FETCH_INSTR = 0;
localparam FETCH_REGS = 1;
localparam EXECUTE = 2;
reg [1:0] state = FETCH_INSTR;
// register write back
assign writeBackData = aluOut;
assign writeBackEn = (state == EXECUTE && (isALUreg || isALUimm));
always @(posedge clk) begin
if(!resetn) begin
PC <= 0;
state <= FETCH_INSTR;
end else begin
if(writeBackEn && rdId != 0) begin
RegisterBank[rdId] <= writeBackData;
// For displaying what happens.
if(rdId == 1) begin
leds <= writeBackData;
end
`ifdef BENCH
$display("x%0d <= %b",rdId,writeBackData);
`endif
end
case(state)
FETCH_INSTR: begin
instr <= MEM[PC[31:2]];
state <= FETCH_REGS;
end
FETCH_REGS: begin
rs1 <= RegisterBank[rs1Id];
rs2 <= RegisterBank[rs2Id];
state <= EXECUTE;
end
EXECUTE: begin
if(!isSYSTEM) begin
PC <= PC + 4;
end
state <= FETCH_INSTR;
`ifdef BENCH
if(isSYSTEM) $finish();
`endif
end
endcase
end
end
`ifdef BENCH
always @(posedge clk) begin
if(state == FETCH_REGS) begin
case (1'b1)
isALUreg: $display(
"ALUreg rd=%d rs1=%d rs2=%d funct3=%b",
rdId, rs1Id, rs2Id, funct3
);
isALUimm: $display(
"ALUimm rd=%d rs1=%d imm=%0d funct3=%b",
rdId, rs1Id, Iimm, funct3
);
isBranch: $display("BRANCH");
isJAL: $display("JAL");
isJALR: $display("JALR");
isAUIPC: $display("AUIPC");
isLUI: $display("LUI");
isLoad: $display("LOAD");
isStore: $display("STORE");
isSYSTEM: $display("SYSTEM");
endcase
if(isSYSTEM) begin
$finish();
end
end
end
`endif
// Gearbox and reset circuitry.
Clockworks #(
.SLOW(19) // Divide clock frequency by 2^19
)CW(
.CLK(CLK),
.RESET(RESET),
.clk(clk),
.resetn(resetn)
);
assign TXD = 1'b0; // not used for now
endmodule