Files
learnFPGAProject/RTL/PROCESSOR/petitbateau.v
2025-11-27 04:28:54 +03:00

857 lines
33 KiB
Verilog

/******************************************************************************/
// FemtoRV32, a collection of minimalistic RISC-V RV32 cores.
//
// PetitBateau (make it float): a simple single-precision RISC-V FPU
// Mission statement: achieve a good area/performance ratio, by
// implementing a full-precision FMA (48 bits), and micro-programmed
// Newton-Raphson for FDIV and FSQRT (that reuse the FMA).
//
// Rounding works as follows:
// - all subnormals are flushed to zero
// - FADD, FSUB, FMUL, FMADD, FMSUB, FNMADD, FNMSUB: IEEE754 round to zero
// - FDIV and FSQRT do not have correct rounding
// if PRECISE_DIV is set (default), then FDIV rounding is validated in
// tinyraytracer test. Complete proof remains to be done
//
// [TODO] add FPU CSR (and instret for perf stat)]
// [TODO] correct IEEE754 round to zero for FDIV and FSQRT
// [TODO] support IEEE754 denormals
// [TODO] NaNs propagation and infinity
// [TODO] support all IEEE754 rounding modes
//
// Bruno Levy, 2021
/******************************************************************************/
// TODO: instead of mux between A,B,C and FMA, make FMA always compute
// A*B+C and mux rs1,rs2,rs3,1.0,0.0 to A,B,C based on instr (mux
// will be more complicated but will probably reduce overall
// critical path) ?
// TODO: there are too many different paths between the internal registers,
// maybe micro-instructions could be redesigned with this in mind.
// A could be the MSBs of X, avoiding all MV_A_X instructions.
// TODO: the necessity to copy rs1 in E without flushing denormals for
// the int-to-fp instructions is unelegant.
// Include guard for LiteX
`ifndef PETITBATEAU_INCLUDED
`define PETITBATEAU_INCLUDED
// Check condition and display message in simulation
`ifdef BENCH
`define ASSERT(cond,msg) if(!(cond)) $display msg
`define ASSERT_NOT_REACHED(msg) $display msg
`else
`define ASSERT(cond,msg)
`define ASSERT_NOT_REACHED(msg)
`endif
module PetitBateau(
input clk,
input wr, // write strobe, starts computation
input [31:2] instr, // current riscv instruction
// operands
input [31:0] rs1,
input [31:0] rs2,
input [31:0] rs3,
// outputs
output busy,
output [31:0] out
);
// Set to 1 for higher-precision FDIV (costs 30 additional cycles per FDIV)
parameter PRECISE_DIV = 1;
// Uncomment the line below to emulate all FPU instructions in Verilator
// (useful to test instruction decoder and implementations of micro-instr
// in C++). See SIM/FPU_funcs.{h,cpp}
//`define FPU_EMUL
// Two high-resolution registers for the FMA, that computes X+Y
// Register X has the accumulator / shifters / leading zero counter
// Normalized if first bit set is bit 47
// Represented number is +/- frac * 2^(exp-127-47)
reg X_sign; reg signed [8:0] X_exp; reg signed [49:0] X_frac;
reg Y_sign; reg signed [8:0] Y_exp; reg signed [49:0] Y_frac;
// FPU output = 32 MSBs of X register (see below)
// A macro to easily write to it (`X <= ...),
// used when FPU output is an integer.
`define X {X_sign, X_exp[7:0], X_frac[46:24]}
assign out = `X;
// Five single-precision floating-point registers for internal use.
// A,B,C are wired to the FMA that computes either A*B+C or A+B
// D,E are temporaries used by FDIV and FSQRT
// Following IEEE754, represented number is +/- frac * 2^(exp-127-23)
// (127: bias 23: position of first bit set for normalized numbers)
reg A_sign; reg [7:0] A_exp; reg [23:0] A_frac;
reg B_sign; reg [7:0] B_exp; reg [23:0] B_frac;
reg C_sign; reg [7:0] C_exp; reg [23:0] C_frac;
reg D_sign; reg [7:0] D_exp; reg [23:0] D_frac;
reg E_sign; reg [7:0] E_exp; reg [23:0] E_frac;
/*************************************************************************/
// Load a 32-bit value in RD
// RD: one of A,B,C,D,E
// VAL: a 32-bit value
`define FP_LD32(RD,VAL) \
{RD``_sign, RD``_exp, RD``_frac[22:0]} <= VAL; RD``_frac[23] <= 1'b1
// Load floating point value in RD by sign, exponent, fraction
// RD: one of A,B,C,D,E
// sign: 1'b1 (-) or 1'b0 (+)
// exp: 8-bits, biased exponent
// frac: 24-bit fraction
`define FP_LD(RD,sign,eexp,frac) \
{RD``_sign, RD``_exp, RD``_frac} <= {sign,eexp,frac}
// RD <= RS
// RD,RS: one of A,B,C,D,E
`define FP_MV(RD,RS) \
{RD``_sign, RD``_exp, RD``_frac} <= {RS``_sign, RS``_exp, RS``_frac}
/** FPU micro-instructions and ROM ****************************************/
localparam FPMI_READY = 0;
localparam FPMI_LOAD_XY = 1; // X <- A; Y <- B
localparam FPMI_LOAD_XY_MUL = 2; // X <- norm(A*B); Y <- C
localparam FPMI_ADD_SWAP = 3; // if |X|>|Y| swap(X,Y);
// if sign(X) != sign(Y) X <- -X
localparam FPMI_ADD_SHIFT = 4; // shift X to match Y exponent
localparam FPMI_ADD_ADD = 5; // X <- X + Y
localparam FPMI_ADD_NORM = 6; // X <- norm(X) (after ADD_ADD)
localparam FPMI_CMP = 7; // X <- test X,Y (FEQ,FLE,FLT)
localparam FPMI_MV_A_X = 8; // A <- X
localparam FPMI_MV_B_D = 9; // B <- D
localparam FPMI_MV_B_NH_D = 10; // B <- -0.5*|D|
localparam FPMI_MV_B_E = 11; // B <- E
localparam FPMI_MV_C_A = 12; // C <- A
localparam FPMI_MV_E_X = 13; // E <- X
localparam FPMI_FRCP_PROLOG = 14; // init reciprocal (1/x)
localparam FPMI_FRCP_ITER1 = 15; // iteration for reciprocal
localparam FPMI_FRCP_ITER2 = 16; // iteration for reciprocal
localparam FPMI_FRCP_EPILOG = 17; // epilog for reciprocal
localparam FPMI_FDIV_EPILOG = 18; // epilog for fdiv IEEE-754 rounding
localparam FPMI_FRSQRT_PROLOG = 19; // init recipr sqr root (1/sqrt(x))
localparam FPMI_FP_TO_INT = 20; // fpuOut <- fpoint_to_int(A)
localparam FPMI_INT_TO_FP = 21; // X <- int_to_fpoint(X)
localparam FPMI_MIN_MAX = 22; // fpuOut <- min/max(X,Y)
localparam FPMI_LOAD_Y_ROUND = 23; // Y <- round to nearest
localparam FPMI_NB = 24;
// Instruction exit flag (if set in current micro-instr, exit microprogram)
localparam FPMI_EXIT_FLAG_bit = 1+$clog2(FPMI_NB);
localparam FPMI_EXIT_FLAG = 1 << FPMI_EXIT_FLAG_bit;
reg [6:0] fpmi_PC; // current micro-instruction pointer
reg [1+$clog2(FPMI_NB):0] fpmi_instr; // current micro-instruction
// current micro-instruction as 1-hot: fpmi_instr == NNN <=> fpmi_is[NNN]
(* onehot *)
wire [FPMI_NB-1:0] fpmi_is = 1 << fpmi_instr[$clog2(FPMI_NB):0];
initial fpmi_PC = 0;
assign busy = !fpmi_is[FPMI_READY];
// Generate a micro-instructions in ROM
task fpmi_gen; input [6:0] instr; begin
fpmi_ROM[I] = instr;
I = I + 1;
end endtask
// Generate a FMA sequence in ROM.
// Use fpmi_gen_fma(0) in the middle of a micro-program
// Use fpmi_gen_fma(FPMI_EXIT_FLAG) if last instruction of micro-program
task fpmi_gen_fma; input [6:0] flags; begin
fpmi_gen(FPMI_LOAD_XY_MUL); // X <- norm(A*B), Y <- C
fpmi_gen(FPMI_ADD_SWAP); // if(|X| > |Y|) swap(X,Y) (and sgn)
fpmi_gen(FPMI_ADD_SHIFT); // shift X according to Y exp
fpmi_gen(FPMI_ADD_ADD); // X <- X + Y
fpmi_gen(FPMI_ADD_NORM | flags); // X <- normalize(X)
end endtask
integer I; // current ROM location in initialization
integer iter; // iteration variable for generate Newton-Raphson (FDIV,FSQRT)
localparam FPMI_ROM_SIZE=82 + (12 + 18)*PRECISE_DIV;
reg [1+$clog2(FPMI_NB):0] fpmi_ROM[0:FPMI_ROM_SIZE-1];
// Microprograms start addresses
// Programatically determined when generating the ROM ('initial' block below)
integer FPMPROG_CMP, FPMPROG_ADD, FPMPROG_MUL, FPMPROG_MADD, FPMPROG_DIV;
integer FPMPROG_FP_TO_INT, FPMPROG_INT_TO_FP, FPMPROG_SQRT, FPMPROG_MIN_MAX;
// Start the definition of a microprogram (determines start address)
`define FPMPROG_BEGIN(prg) prg = I
// Ends the definition of a microprogram (displays stats in Verilator)
`ifdef BENCH
`define FPMPROG_END(prg) \
$display("# %3d microinstructions used by %d:%s",I-prg,prg,`"prg`")
`else
`define FPMPROG_END(prg)
`endif
/******************** Generate microprograms in ROM **********************/
initial begin
`ifdef BENCH
$display("# Generating FPMI ROM...");
`endif
I = 0;
fpmi_gen(FPMI_READY | FPMI_EXIT_FLAG);
// ******************** FLT, FLE, FEQ *********************************
`FPMPROG_BEGIN(FPMPROG_CMP);
fpmi_gen(FPMI_LOAD_XY); // X <- A, Y <- B
fpmi_gen(FPMI_CMP | FPMI_EXIT_FLAG); // X <- compare(X,Y)
`FPMPROG_END(FPMPROG_CMP);
// ******************** FADD, FSUB ************************************
`FPMPROG_BEGIN(FPMPROG_ADD);
fpmi_gen(FPMI_LOAD_XY); // X <- A, Y <- B
fpmi_gen(FPMI_ADD_SWAP); // if(|X| > |Y|) swap(X,Y) (,sgn)
fpmi_gen(FPMI_ADD_SHIFT); // shift X according to Y exp
fpmi_gen(FPMI_ADD_ADD); // X <- X + Y
fpmi_gen(FPMI_ADD_NORM | FPMI_EXIT_FLAG); // X <- normalize(X)
`FPMPROG_END(FPMPROG_ADD);
// ******************** FMUL ******************************************
`FPMPROG_BEGIN(FPMPROG_MUL);
fpmi_gen(FPMI_LOAD_XY_MUL | FPMI_EXIT_FLAG); // X <- A*B
`FPMPROG_END(FPMPROG_MUL);
// ******************** FMADD, FMSUB, FNMADD, FNMSUB ******************
`FPMPROG_BEGIN(FPMPROG_MADD);
fpmi_gen_fma(FPMI_EXIT_FLAG); // X <- A*B+C (5 cycles)
`FPMPROG_END(FPMPROG_MADD);
// ******************** FDIV ******************************************
// https://en.wikipedia.org/wiki/Division_algorithm
// https://stackoverflow.com/questions/24792966/
// error-using-newton-raphson-iteration-method-for-
// floating-point-division
//
`FPMPROG_BEGIN(FPMPROG_DIV);
// D' = denominator (rs2) normalized between [0.5,1] (set exp to 126)
fpmi_gen(FPMI_FRCP_PROLOG); // D<-A; E<-B; A<-(-D'); B<-32/17; C<-48/17
fpmi_gen_fma(0); // X <- A*B+C (= -D'*32/17 + 48/17)
for(iter=0; iter<3; iter=iter+1) begin
if(PRECISE_DIV) begin
// X <- X + X*(1-D'*X)
// (slower more precise iter, but not IEEE754 compliant yet...)
fpmi_gen(FPMI_FRCP_ITER1); // A <- -D'; B <- X; C <- 1.0f
fpmi_gen_fma(0); // X <- A*B+C (5 cycles)
fpmi_gen(FPMI_FRCP_ITER2); // A <- X; C <- B
fpmi_gen_fma(0); // X <- A*B+C (5 cycles)
end else begin
// X <- X * (-X*D' + 2)
// (faster but less precise)
fpmi_gen(FPMI_FRCP_ITER1); // A <- -D'; B <- X; C <- 2.0f
fpmi_gen_fma(0); // X <- A*B+C (5 cycles)
fpmi_gen(FPMI_MV_A_X); // A <- X
fpmi_gen(FPMI_LOAD_XY_MUL); // X <- A*B; Y <- C
end
end
if(PRECISE_DIV) begin // round X to nearest
fpmi_gen(FPMI_LOAD_Y_ROUND);
fpmi_gen(FPMI_ADD_ADD);
fpmi_gen(FPMI_ADD_NORM);
end
fpmi_gen(FPMI_FRCP_EPILOG); // A <- (E_sign,frcp_exp,X_frac); B <- D
if(PRECISE_DIV) begin // error correction
fpmi_gen(FPMI_LOAD_XY_MUL); // X <- A*B
fpmi_gen(FPMI_FDIV_EPILOG); // B <- -E; C <- D; D <- A
fpmi_gen(FPMI_MV_A_X);
fpmi_gen_fma(0);
fpmi_gen(FPMI_MV_C_A);
fpmi_gen(FPMI_MV_B_D);
fpmi_gen(FPMI_MV_A_X);
fpmi_gen_fma(FPMI_EXIT_FLAG);
end else begin
fpmi_gen(FPMI_LOAD_XY_MUL | FPMI_EXIT_FLAG); // X <- A*B
end
`FPMPROG_END(FPMPROG_DIV);
// ******************** FCVT.W.S, FCVT.WU.S ***************************
`FPMPROG_BEGIN(FPMPROG_FP_TO_INT);
fpmi_gen(FPMI_LOAD_XY);
fpmi_gen(FPMI_FP_TO_INT | FPMI_EXIT_FLAG);
`FPMPROG_END(FPMPROG_FP_TO_INT);
// ******************** FCVT.S.W, FCVT.S.WU ***************************
`FPMPROG_BEGIN(FPMPROG_INT_TO_FP); // Compute A+0 (use CLZ plugged on X)
fpmi_gen(FPMI_INT_TO_FP); // X <- 0; Y <- A
fpmi_gen(FPMI_ADD_ADD); // X <- X + Y
fpmi_gen(FPMI_ADD_NORM | FPMI_EXIT_FLAG); // X <- normalize(X)
`FPMPROG_END(FPMPROG_INT_TO_FP);
// ******************** FSQRT *****************************************
// Using Doom's fast inverse square root algorithm:
// https://en.wikipedia.org/wiki/Fast_inverse_square_root
// http://www.lomont.org/papers/2003/InvSqrt.pdf
// TODO: IEEE754-compliant version
// See https://t.co/V1SWQ6N6xD?amp=1 (Method of Switching Constants)
// See simple effective fast inverse square root with two magic
// constants.
//
`FPMPROG_BEGIN(FPMPROG_SQRT);
// D<-rs1; E,A,B<-(doom_magic - (A >> 1)); C<-3/2
fpmi_gen(FPMI_FRSQRT_PROLOG);
for(iter=0; iter<2; iter=iter+1) begin
// X <- X * (3/2 - (0.5*rs1*X*X))
fpmi_gen(FPMI_LOAD_XY_MUL); // X <- A*B; Y <- C
fpmi_gen(FPMI_MV_A_X); // A <- X
fpmi_gen(FPMI_MV_B_NH_D); // B <- -0.5*|D|
fpmi_gen_fma(0); // X <- A*B+C
fpmi_gen(FPMI_MV_A_X); // A <- X
fpmi_gen(FPMI_MV_B_E); // B <- E
fpmi_gen(FPMI_LOAD_XY_MUL); // X <- A*B; Y <- C
if(iter==0) begin
fpmi_gen(FPMI_MV_E_X); // E <- X
fpmi_gen(FPMI_MV_A_X); // A <- X
fpmi_gen(FPMI_MV_B_E); // B <- E
end
end // X contains 1/sqrt(rs1), now compute rs1*X to get sqrt(rs1)
fpmi_gen(FPMI_MV_A_X); // A <- X
fpmi_gen(FPMI_MV_B_D); // B <- D
fpmi_gen(FPMI_LOAD_XY_MUL | FPMI_EXIT_FLAG); // X <- A*B; Y <- C
`FPMPROG_END(FPMPROG_SQRT);
// ******************** FMIN, FMAX ************************************
`FPMPROG_BEGIN(FPMPROG_MIN_MAX);
fpmi_gen(FPMI_LOAD_XY);
fpmi_gen(FPMI_MIN_MAX | FPMI_EXIT_FLAG);
`FPMPROG_END(FPMPROG_MIN_MAX);
`ifdef BENCH
$display("# FPMI ROM max address:%d",I-1);
$display("# FPMI ROM size :%d",FPMI_ROM_SIZE);
`ASSERT(I <= FPMI_ROM_SIZE,("!!!!!!! FPMI ROM SIZE exceeded !!!!!!!"));
`endif
end
`ifndef FPU_EMUL
// determine microprogram to be called based on decoded instruction
reg [6:0] fpmprog;
always @(*) begin
(* parallel_case, full_case *)
case(1'b1)
isFLT | isFLE | isFEQ : fpmprog = FPMPROG_CMP[6:0];
isFADD | isFSUB : fpmprog = FPMPROG_ADD[6:0];
isFMUL : fpmprog = FPMPROG_MUL[6:0];
isFMADD | isFMSUB | isFNMADD | isFNMSUB : fpmprog = FPMPROG_MADD[6:0];
isFDIV : fpmprog = FPMPROG_DIV[6:0];
isFSQRT : fpmprog = FPMPROG_SQRT[6:0];
isFCVTWS | isFCVTWUS : fpmprog = FPMPROG_FP_TO_INT[6:0];
isFCVTSW | isFCVTSWU : fpmprog = FPMPROG_INT_TO_FP[6:0];
isFMIN | isFMAX : fpmprog = FPMPROG_MIN_MAX[6:0];
default : fpmprog = 0;
endcase
end
// next micro-instruction program counter
wire [6:0] fpmi_PC_next =
wr ? fpmprog :
fpmi_instr[FPMI_EXIT_FLAG_bit] ? 0 :
fpmi_PC+1 ;
always @(posedge clk) begin
fpmi_PC <= fpmi_PC_next;
fpmi_instr <= fpmi_ROM[fpmi_PC_next];
end
always @(posedge clk) begin
if(wr) begin
// Denormals are flushed to zero
`FP_LD(A, rs1[31], rs1[30:23], (|rs1[30:23]?{1'b1,rs1[22:0]}:24'b0));
`FP_LD(B, rs2[31], rs2[30:23], (|rs2[30:23]?{1'b1,rs2[22:0]}:24'b0));
`FP_LD(C, rs3[31], rs3[30:23], (|rs3[30:23]?{1'b1,rs3[22:0]}:24'b0));
// Backup rs1 in E without flushing to zero (for int2fp instructions)
`FP_LD32(E, rs1);
// Single-cycle instructions
(* parallel_case *)
case(1'b1)
isFSGNJ : `X <= { rs2[31], rs1[30:0]};
isFSGNJN : `X <= { !rs2[31], rs1[30:0]};
isFSGNJX : `X <= { rs1[31]^rs2[31], rs1[30:0]};
isFCLASS : `X <= fclass;
isFMVXW | isFMVWX : `X <= rs1;
endcase
end else if(busy) begin
// Implementation of the micro-instructions
(* parallel_case *)
case(1'b1)
// X <- A ; Y <- B
fpmi_is[FPMI_LOAD_XY]: begin
X_sign <= A_sign;
X_frac <= {2'b0, A_frac, 24'd0};
X_exp <= {1'b0, A_exp};
Y_sign <= B_sign ^ isFSUB;
Y_frac <= {2'b0, B_frac, 24'd0};
Y_exp <= {1'b0, B_exp};
end
// X <- (+/-) normalize(A*B); Y <- (+/-)C
fpmi_is[FPMI_LOAD_XY_MUL]: begin
X_sign <= A_sign ^ B_sign ^ (isFNMSUB | isFNMADD);
X_frac <= prod_Z ? 0 :
(prod_frac[47] ? prod_frac : {prod_frac[48:0],1'b0});
X_exp <= prod_Z ? 0 : prod_exp_norm;
Y_sign <= C_sign ^ (isFMSUB | isFNMADD);
Y_frac <= {2'b0, C_frac, 24'd0};
Y_exp <= {1'b0, C_exp};
end
// if(|X| > |Y|) swap(X,Y)
// if X_sign != Y_sign X <- -X
// We always *add*, but replace X_frac with -X_frac if the
// sign of the operands differ, THEN we shift (signed shift). In
// this way, rounding is correct, even when subtracting a
// low magnitude numner from a large magnitude one.
fpmi_is[FPMI_ADD_SWAP]: begin
if(fabsY_LT_fabsX) begin
X_frac <= (X_sign ^ Y_sign) ? -Y_frac : Y_frac;
Y_frac <= X_frac;
X_exp <= Y_exp; Y_exp <= X_exp;
X_sign <= Y_sign; Y_sign <= X_sign;
end else if(X_sign ^ Y_sign) begin
X_frac <= -X_frac;
end
end
// shift A in order to make it match B exponent
fpmi_is[FPMI_ADD_SHIFT]: begin
`ASSERT(!fabsY_LT_fabsX, ("ADD_SHIFT: incorrect order"));
X_frac <= X_frac >>> exp_diff; // note the signed shift !
X_exp <= Y_exp;
end
// A <- A (+/-) B
fpmi_is[FPMI_ADD_ADD]: begin
X_frac <= frac_sum[49:0];
X_sign <= Y_sign;
// normalization left shamt = 47 - first_bit_set = clz - 16
norm_lshamt <= frac_sum_clz - 16;
// Exponent of X once normalized = X_exp + first_bit_set - 47
// = X_exp + 63 - clz - 47 = X_exp + 16 - clz
X_exp_norm <= X_exp + 16 - {3'b000,frac_sum_clz};
end
// X <- normalize(X) (after ADD_ADD -> norm_lshamt and A_exp_norm)
fpmi_is[FPMI_ADD_NORM]: begin
if(X_exp_norm <= 0 || (X_frac == 0)) begin
X_frac <= 0;
X_exp <= 0;
end else begin
X_frac <= X_frac[48] ? (X_frac >> 1) : X_frac << norm_lshamt;
X_exp <= X_exp_norm;
end
end
fpmi_is[FPMI_LOAD_Y_ROUND]: begin
Y_sign <= X_sign;
Y_exp <= X_exp;
Y_frac <= X_frac[23] ? (1 << 24) : 50'd0;
end
// X <- result of comparison between X and Y
fpmi_is[FPMI_CMP]: begin
`X <= { 31'b0,
isFLT && X_LT_Y ||
isFLE && X_LE_Y ||
isFEQ && X_EQ_Y
};
end
fpmi_is[FPMI_MV_B_D] : `FP_MV(B,D);
fpmi_is[FPMI_MV_B_E] : `FP_MV(B,E);
fpmi_is[FPMI_MV_A_X] : `FP_LD(A,X_sign,X_exp[7:0],X_frac[47:24]);
fpmi_is[FPMI_MV_C_A] : `FP_MV(C,A);
fpmi_is[FPMI_MV_E_X] : `FP_LD(E,X_sign,X_exp[7:0],X_frac[47:24]);
// B <= -|D| / 2.0
fpmi_is[FPMI_MV_B_NH_D]:
{B_sign, B_exp, B_frac} <= {1'b1,D_exp-8'd1,D_frac};
fpmi_is[FPMI_FRCP_PROLOG]: begin
`FP_MV(D,A);
`FP_MV(E,B);
// A <= -D', that is, -(B normalized in [0.5,1])
`FP_LD(A,1'b1,8'd126, B_frac);
`FP_LD32(B, 32'h3FF0F0F1); // 32/17
`FP_LD32(C, 32'h4034B4B5); // 48/17
end
fpmi_is[FPMI_FRCP_ITER1]: begin
`FP_LD(A,1'b1,8'd126, E_frac); // A <= -D'
`FP_LD(B,X_sign,X_exp[7:0],X_frac[47:24]); // B <= X
// 1.0 2.0
`FP_LD32(C, PRECISE_DIV ? 32'h3f800000 : 32'h40000000);
end
// This one is used only if PRECISE_DIV is set
fpmi_is[FPMI_FRCP_ITER2]: begin
`FP_LD(A,X_sign,X_exp[7:0],X_frac[47:24]); // A <= X
`FP_MV(C,B);
end
fpmi_is[FPMI_FRCP_EPILOG]: begin
`FP_LD(A,E_sign,frcp_exp[7:0],X_frac[47:24]);
`FP_MV(B,D);
end
// This one is used only if PRECISE_DIV is set
fpmi_is[FPMI_FDIV_EPILOG]: begin
`FP_LD(B,!E_sign, E_exp, E_frac); // B <= -E
`FP_MV(C,D);
`FP_MV(D,A);
end
fpmi_is[FPMI_FRSQRT_PROLOG]: begin
`FP_LD32(D, rs1);
`FP_LD32(E, rsqrt_doom_magic);
`FP_LD32(A, rsqrt_doom_magic);
`FP_LD32(B, rsqrt_doom_magic);
`FP_LD32(C, 32'h3fc00000); // 1.5
end
fpmi_is[FPMI_FP_TO_INT]: begin
// TODO: check overflow
`X <=
(isFCVTWUS | !X_sign) ? X_fcvt_ftoi_shifted
: -$signed(X_fcvt_ftoi_shifted);
end
fpmi_is[FPMI_INT_TO_FP]: begin
// TODO: rounding
// We do a fake addition with zero, to prepare normalization
// (uses CLZ plugged on the adder).
X_frac <= 0;
// 127+23: standard exponent bias
// +6 because it is bit 29 of rs1 that overwrites
// bit 47 of A_frac, instead of bit 23 (and 29-23 = 6).
X_exp <= 127+23+6;
Y_frac <=
(isFCVTSWU | !E_sign) ? {E_sign, E_exp, E_frac[22:0], 18'd0}
: {-$signed({E_sign, E_exp, E_frac[22:0]}), 18'd0};
Y_sign <= isFCVTSW & E_sign;
end
fpmi_is[FPMI_MIN_MAX]: begin
`X <= (X_LT_Y ^ isFMAX)
? {X_sign, X_exp[7:0], X_frac[46:24]}
: {Y_sign, Y_exp[7:0], Y_frac[46:24]};
end
endcase
end
end
`endif
// Some circuitry used by the FPU micro-instructions:
// ******************* Comparisons ******************************************
// Exponent adder
wire signed [8:0] exp_sum = Y_exp + X_exp;
wire signed [8:0] exp_diff = Y_exp - X_exp;
wire expX_EQ_expY = (exp_diff == 0);
wire fracX_EQ_fracY = (frac_diff == 0);
wire fabsX_EQ_fabsY = (expX_EQ_expY && fracX_EQ_fracY);
wire fabsX_LT_fabsY = (!exp_diff[8] && !expX_EQ_expY) ||
(expX_EQ_expY && !fracX_EQ_fracY && !frac_diff[50]);
wire fabsX_LE_fabsY = (!exp_diff[8] && !expX_EQ_expY) ||
(expX_EQ_expY && !frac_diff[50]);
wire fabsY_LT_fabsX = exp_diff[8] || (expX_EQ_expY && frac_diff[50]);
wire fabsY_LE_fabsX = exp_diff[8] ||
(expX_EQ_expY && (frac_diff[50] || fracX_EQ_fracY));
wire X_LT_Y = X_sign && !Y_sign ||
X_sign && Y_sign && fabsY_LT_fabsX ||
!X_sign && !Y_sign && fabsX_LT_fabsY ;
wire X_LE_Y = X_sign && !Y_sign ||
X_sign && Y_sign && fabsY_LE_fabsX ||
!X_sign && !Y_sign && fabsX_LE_fabsY ;
wire X_EQ_Y = fabsX_EQ_fabsY && (X_sign == Y_sign);
// ****************** Addition, subtraction *********************************
wire signed [50:0] frac_sum = Y_frac + X_frac;
wire signed [50:0] frac_diff = Y_frac - X_frac;
// ****************** Product ***********************************************
wire [49:0] prod_frac = A_frac * B_frac; // TODO: check overflows
// exponent of product, once normalized
// (obtained by writing expression of product and inspecting exponent)
// Two cases: first bit set = 47 or 46 (only possible cases with normals)
wire signed [8:0] prod_exp_norm = A_exp+B_exp-127+{7'b0,prod_frac[47]};
// detect null product and underflows (all denormals are flushed to zero)
wire prod_Z = (prod_exp_norm <= 0) || !(|prod_frac[47:46]);
// ****************** Normalization *****************************************
// Count leading zeroes in A+B
// Note1: CLZ only work with power of two width (hence 13'b0 padding).
// Note2: first bit set = 63 - CLZ (of course !)
wire [5:0] frac_sum_clz;
CLZ clz2({13'b0,frac_sum}, frac_sum_clz);
reg [5:0] norm_lshamt; // shift amount for ADD normalization
// Exponent of A once normalized = X_exp + first_bit_set - 47
// = X_exp + 63 - clz - 47 = X_exp + 16 - clz
// X_exp_norm <= X_exp + 16 - {3'b000,A_clz};
reg signed [8:0] X_exp_norm;
// ****************** Reciprocal (1/x), used by FDIV ************************
// Exponent for reciprocal (1/x)
// Initial value of x kept in E.
wire signed [8:0] frcp_exp = 9'd126 + X_exp - $signed({1'b0, E_exp});
// ****************** Reciprocal square root (1/sqrt(x)) ********************
// https://en.wikipedia.org/wiki/Fast_inverse_square_root
wire [31:0] rsqrt_doom_magic = 32'h5f3759df - {1'b0,A_exp, A_frac[22:1]};
// ****************** Float to Integer conversion ***************************
// -127-23 is standard exponent bias
// -6 because it is bit 29 of X that corresponds to bit 47 of X_frac,
// instead of bit 23 (and 23-29 = -6).
wire signed [8:0] fcvt_ftoi_shift = A_exp - 9'd127 - 9'd23 - 9'd6;
wire signed [8:0] neg_fcvt_ftoi_shift = -fcvt_ftoi_shift;
wire [31:0] X_fcvt_ftoi_shifted = fcvt_ftoi_shift[8] ? // R or L shift
(|neg_fcvt_ftoi_shift[8:5] ? 0 : // underflow
({X_frac[49:18]} >> neg_fcvt_ftoi_shift[4:0])) :
({X_frac[49:18]} << fcvt_ftoi_shift[4:0]);
// ******************* Classification ***************************************
wire rs1_exp_Z = (rs1[30:23] == 0 );
wire rs1_exp_255 = (rs1[30:23] == 255);
wire rs1_frac_Z = (rs1[22:0] == 0 );
wire [31:0] fclass = {
22'b0,
rs1_exp_255 & rs1[22], // 9: quiet NaN
rs1_exp_255 & !rs1[22] & (|rs1[21:0]), // 8: sig NaN
!rs1[31] & rs1_exp_255 & rs1_frac_Z, // 7: +infinity
!rs1[31] & !rs1_exp_Z & !rs1_exp_255, // 6: +normal
!rs1[31] & rs1_exp_Z & !rs1_frac_Z, // 5: +subnormal
!rs1[31] & rs1_exp_Z & rs1_frac_Z, // 4: +0
rs1[31] & rs1_exp_Z & rs1_frac_Z, // 3: -0
rs1[31] & rs1_exp_Z & !rs1_frac_Z, // 2: -subnormal
rs1[31] & !rs1_exp_Z & !rs1_exp_255, // 1: -normal
rs1[31] & rs1_exp_255 & rs1_frac_Z // 0: -infinity
};
/************************************************************************/
// RV32F instruction decoder
// See table p133 (RV32G instruction listings)
// Notes:
// - FLW/FSW handled by LOAD/STORE in femtorv32 (instr[2] set if FLW/FSW)
// - For all other F instructions, instr[6:5] == 2'b10
// - FMADD/FMSUB/FNMADD/FNMSUB: instr[4] = 1'b0
// - For all remaining F instructions, instr[4] = 1'b1
// - FMV.X.W and FCLASS have same funct7 (7'b1110000),
// (discriminated by instr[12])
// - there is a big gotcha in the official doc for RV32F:
// the doc says FNMADD computes -rs1*rs2-rs3
// (yes, with *minus* rs3)
// it should have said FNMADD computes -(rs1*rs2+rs3)
// and FNMSUB compures -(rs1*rs2-rs3)
// they probably did not put the parentheses because when
// you implement it, you change the sign of rs1 and rs3 according
// to the operation rather than the sign of the whole result
// (here, it is done by the FPMI_LOAD_XY_MUL micro instruction).
reg isFMADD, isFMSUB, isFNMSUB, isFNMADD;
reg isFADD, isFSUB, isFMUL, isFDIV, isFSQRT;
reg isFSGNJ, isFSGNJN, isFSGNJX;
reg isFMIN, isFMAX;
reg isFEQ, isFLT, isFLE;
reg isFCLASS, isFCVTWS, isFCVTWUS;
reg isFCVTSW, isFCVTSWU;
reg isFMVXW, isFMVWX;
always @(*) begin
isFMADD = (instr[4:2] == 3'b000); // rd <- rs1*rs2+rs3
isFMSUB = (instr[4:2] == 3'b001); // rd <- rs1*rs2-rs3
isFNMSUB = (instr[4:2] == 3'b010); // rd <- -(rs1*rs2-rs3)
isFNMADD = (instr[4:2] == 3'b011); // rd <- -(rs1*rs2+rs3)
isFADD = (instr[4] && (instr[31:27] == 5'b00000));
isFSUB = (instr[4] && (instr[31:27] == 5'b00001));
isFMUL = (instr[4] && (instr[31:27] == 5'b00010));
isFDIV = (instr[4] && (instr[31:27] == 5'b00011));
isFSQRT = (instr[4] && (instr[31:27] == 5'b01011));
isFSGNJ = (instr[4] && (instr[31:27]==5'b00100)&&(instr[13:12]==2'b00));
isFSGNJN = (instr[4] && (instr[31:27]==5'b00100)&&(instr[13:12]==2'b01));
isFSGNJX = (instr[4] && (instr[31:27]==5'b00100)&&(instr[13:12]==2'b10));
isFMIN = (instr[4] && (instr[31:27] == 5'b00101) && !instr[12]);
isFMAX = (instr[4] && (instr[31:27] == 5'b00101) && instr[12]);
isFEQ =(instr[4] && (instr[31:27]==5'b10100) && (instr[13:12] == 2'b10));
isFLT =(instr[4] && (instr[31:27]==5'b10100) && (instr[13:12] == 2'b01));
isFLE =(instr[4] && (instr[31:27]==5'b10100) && (instr[13:12] == 2'b00));
isFCLASS = (instr[4] && (instr[31:27] == 5'b11100) && instr[12]);
isFCVTWS = (instr[4] && (instr[31:27] == 5'b11000) && !instr[20]);
isFCVTWUS = (instr[4] && (instr[31:27] == 5'b11000) && instr[20]);
isFCVTSW = (instr[4] && (instr[31:27] == 5'b11010) && !instr[20]);
isFCVTSWU = (instr[4] && (instr[31:27] == 5'b11010) && instr[20]);
isFMVXW = (instr[4] && (instr[31:27] == 5'b11100) && !instr[12]);
isFMVWX = (instr[4] && (instr[31:27] == 5'b11110));
end
`ifdef FPU_EMUL
`define FPU_EMUL1(op) `X <= $c32(op,"(",rs1,")")
`define FPU_EMUL2(op) `X <= $c32(op,"(",rs1,",",rs2,")")
`define FPU_EMUL3(op) `X <= $c32(op,"(",rs1,",",rs2,",",rs3,")")
always @(posedge clk) begin
if(wr) begin
(* parallel_case *)
case(1'b1)
isFMUL : `FPU_EMUL2("FMUL");
isFADD : `FPU_EMUL2("FADD");
isFSUB : `FPU_EMUL2("FSUB");
isFDIV : `FPU_EMUL2("FDIV");
isFSQRT : `FPU_EMUL1("FSQRT");
isFMADD : `FPU_EMUL3("FMADD");
isFMSUB : `FPU_EMUL3("FMSUB");
isFNMADD : `FPU_EMUL3("FNMADD");
isFNMSUB : `FPU_EMUL3("FNMSUB");
isFEQ : `FPU_EMUL2("FEQ");
isFLT : `FPU_EMUL2("FLT");
isFLE : `FPU_EMUL2("FLE");
isFCVTWS : `FPU_EMUL1("FCVTWS");
isFCVTWUS: `FPU_EMUL1("FCVTWUS");
isFCVTSW : `FPU_EMUL1("FCVTSW");
isFCVTSWU: `FPU_EMUL1("FCVTSWU");
isFMIN : `FPU_EMUL2("FMIN");
isFMAX : `FPU_EMUL2("FMAX");
isFCLASS : `FPU_EMUL1("FCLASS");
isFSGNJ : `FPU_EMUL2("FSGNJ");
isFSGNJN : `FPU_EMUL2("FSGNJN");
isFSGNJX : `FPU_EMUL2("FSGNJX");
isFMVXW | isFMVWX : `X <= rs1;
endcase
end
end
`endif
/****************************************************************************/
// When doing simulations, compare the result of all operations with
// what's computed on the host CPU.
// Note: my FDIV and FSQRT are not IEEE754 compliant (yet) !
// (checks commented-out for now)
`ifdef NRV_FEMTORV32_PETITBATEAU // makes sure we are in the learn-FPGA fmwk
`ifdef VERILATOR
`define FPU_CHECK1(op) \
z <= $c32("CHECK_",op,"(",`X,",",rs1,")")
`define FPU_CHECK2(op) \
z <= $c32("CHECK_",op,"(",`X,",",rs1,",",rs2,")")
`define FPU_CHECK3(op) \
z <= $c32("CHECK_",op,"(",`X,",",rs1,",",rs2,",",rs3,")")
reg [31:0] z;
reg active;
always @(posedge clk) begin
if(wr) begin
active <= 1'b1;
end
if(active && !busy) begin
active <= 1'b0;
case(1'b1)
isFMUL : `FPU_CHECK2("FMUL");
isFADD : `FPU_CHECK2("FADD");
isFSUB : `FPU_CHECK2("FSUB");
isFDIV : `FPU_CHECK2("FDIV");
// isFSQRT: `FPU_CHECK1("FSQRT"); // yes I know, not IEEE754 yet
isFMADD: `FPU_CHECK3("FMADD");
isFMSUB: `FPU_CHECK3("FMSUB");
isFNMADD: `FPU_CHECK3("FNMADD");
isFNMSUB: `FPU_CHECK3("FNMSUB");
isFEQ: `FPU_CHECK2("FEQ");
isFLT: `FPU_CHECK2("FLT");
isFLE: `FPU_CHECK2("FLE");
isFCVTWS : `FPU_CHECK1("FCVTWS");
isFCVTWUS: `FPU_CHECK1("FCVTWUS");
isFCVTSW : `FPU_CHECK1("FCVTSW");
isFCVTSWU: `FPU_CHECK1("FCVTSWU");
isFMIN: `FPU_CHECK2("FMIN");
isFMAX: `FPU_CHECK2("FMAX");
endcase
end
end
`endif
`endif
endmodule
/**********************************************************************/
// FPU Normalization needs to detect the position of the first bit set
// in the A_frac register. It is easier to count the number of leading
// zeroes (CLZ for Count Leading Zeroes), as follows. See:
// https://electronics.stackexchange.com/questions/196914/
// verilog-synthesize-high-speed-leading-zero-count
// TODO: test also Dean Gaudet's algorithm (see Hackers Delights p. 110)
module CLZ #(
parameter W_IN = 64, // must be power of 2, >= 2
parameter W_OUT = $clog2(W_IN)
) (
input wire [W_IN-1:0] in,
output wire [W_OUT-1:0] out
);
generate
if(W_IN == 2) begin
assign out = !in[1];
end else begin
wire [W_OUT-2:0] half_count;
wire [W_IN/2-1:0] lhs = in[W_IN/2 +: W_IN/2];
wire [W_IN/2-1:0] rhs = in[0 +: W_IN/2];
wire left_empty = ~|lhs;
CLZ #(
.W_IN(W_IN/2)
) inner(
.in(left_empty ? rhs : lhs),
.out(half_count)
);
assign out = {left_empty, half_count};
end
endgenerate
endmodule
`endif